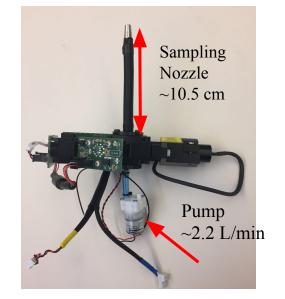
Modifying and Calibrating Low Cost Optical Particle Counters for Stratospheric Use

Nathan Pharis, Joseph Habeck, Joel Douglas, Jacob Mieners, Asif Ally, Patrick Collins, Dr. James Flaten University of Minnesota - Twin Cities

UNIVERSITY OF MINNESOTA Driven to Discover[™]

Project Outline

- The goal of using optical particle counters with this project is to collect data for Dr. Candler, a professor studying the effects of particulates on hypersonic flows, and teams at the University of Colorado - Boulder and Embry Riddle Aeronautical University to get a better understanding of stratospheric turbulence and the impact that micron-sized particles may have on these regions of turbulence.


Background

- Optical Particle Counters (OPCs) use laser light scattering to count small particulates on the order of one micron.
- Most OPCs are designed for ground based applications (e.g. indoor/outdoor air quality)

- **OPCs capable of stratospheric operation are expensive**, on the order of thousands of US dollars per commercial unit.

Background

- State-of-the-art for in-situ particulate
 measurements
- Designed/evaluated by Renard et. al. (2016)
- Calibrated at relevant pressure/temperature
- Over 130 flights in various measurement campaigns in Europe
- "High-cost" OPC (~\$10k-\$15k)
- Most measurements show that particulates < 1 µm dominate size distribution at all altitudes
- UMN Goals for LOAC:
 - 1. Use as an "in-flight reference" sensor for low-cost OPCs
 - 2. Gather quality data for particulate measurement database

Background

- Low-cost options for particulate sensors enable routine/multiple, potentially-non-recoverable balloon flights
 - No recovery requirements allow for flights over varying ground topology (e.g. mountains, oceans) where recovery would otherwise be difficult/impossible

Optical particle counters (OPCs) are capable of estimating particulate size distributions and are available at relatively low-cost (<\$500)

Challenge: Low-cost OPCs are designed for ground based applications (e.g. indoor/outdoor air quality) but their evaluation under stratospheric conditions does not exist in the literature

Goal

For stratospheric ballooning capability:

- 1. Low-cost OPCs must be modified/recalibrated for stratospheric use
- 2. Quantitative study to characterize sensor output under the extreme conditions in the stratosphere (low-pressure, low-temperature)
- 3. Compare low-cost, commercial particulate sensors with available higher-cost atmospheric particulate sensors (e.g. LOAC - Light Optical Aerosol Counter)
 - a. Are comparable quality measurements possible at a significantly lower cost?

Low Cost Optical Particle Counters Studied

- Low-cost OPCs
 - Alphasense OPC-N3 (~\$500)
 - Alphasense R1 (~\$150)
 - Sensirion SPS30 (~\$50)
 - Plantower PMS5003 (~\$30)
 - Honeywell HPM (~\$30)
- Modifications made for stratospheric use:
 - Replaced fans with small rotary vane pumps (used to draw air samples) to maintain adequate volume flow rates in stratosphere
 - 3D printed sleeves to minimize disturbances near inlet and to connect inlet tubes and pumps to originally-fan-based sensors
- Key notes so far:
 - All sensors struggle to operate in stratosphere
 - Alphasense OPC-N3 has best ground calibration results
 - Sensirion SPS30 has been most promising during flights

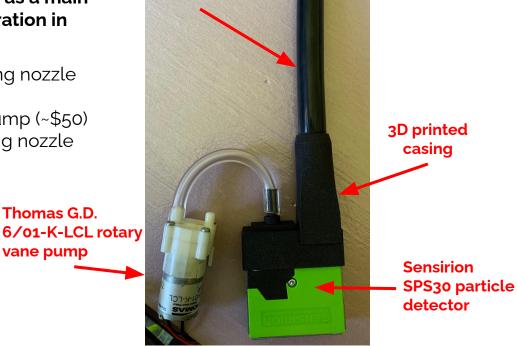
Alphasense OPC-N3

Sensirion SPS30

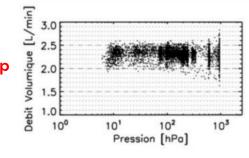
Plantower PMS5003

Honeywell HPM

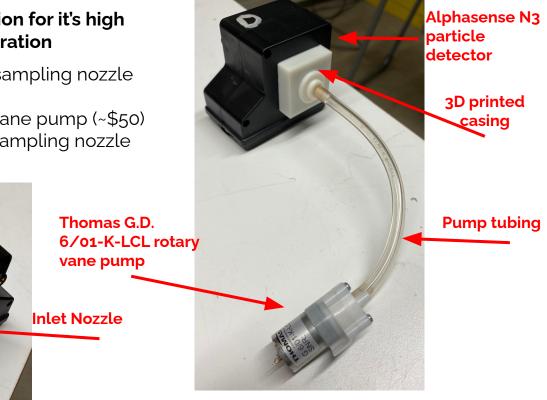
Alphasense OPC-R1


Low Cost Optical Particle Counters - SPS30

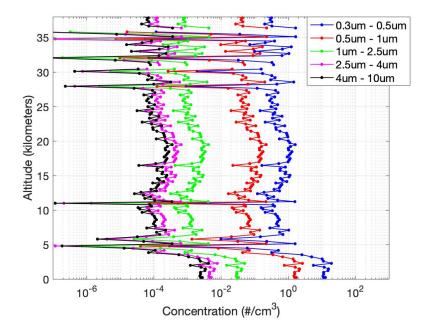
Thomas G.D.

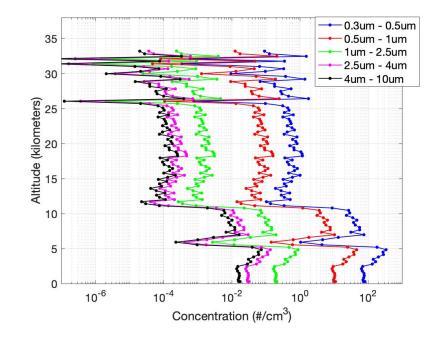

vane pump

- As of May 2020, the SPS30 was chosen as a main ٠ candidate based on its promising operation in the stratosphere
- 3D printed casing for pump and sampling nozzle ٠ attachments (~\$10)
- Thomas G.D. 6/01-K-LCL rotary vane pump (~\$50) ٠
- Silicon rubber anti-static tubing sampling nozzle ٠ (~\$10/ft)



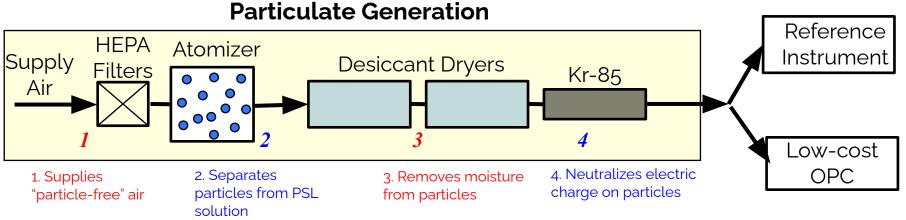
Data from Vignelles (2017) showing the Thomas G.D. pump maintaining constant volume flow at low-pressures



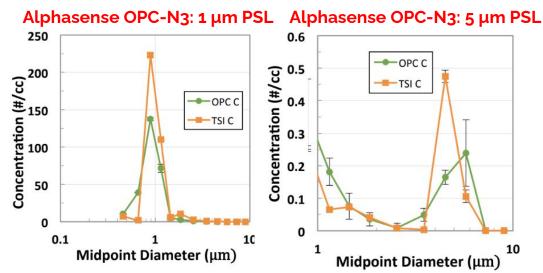

Low Cost Optical Particle Counters - Alphasense N3

- The N3 is also under consideration for it's high quality standard condition calibration
- 3D printed casing for pump and sampling nozzle attachments (~\$10)
- Thomas G.D. 6/01-K-LCL rotary vane pump (~\$50)
- Silicon rubber anti-static tubing sampling nozzle (~\$10/ft)

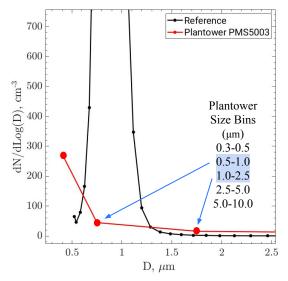
SPS30 Flight Data - August 17th, August 25th



SPS30 1 Min Avg. Number Concentrations August 17th 2020

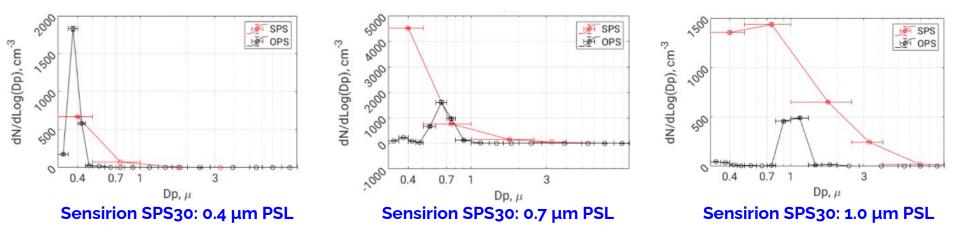

SPS30 1 Min Avg. Number Concentrations August 25th 2020

OPC Calibration: Standard Conditions



- Particulates of known sizes generated using NIST traceable Polystyrene Latex (PSL) spheres and supplied to OPCs under standard conditions (1 atm, room temperature)
- Generated size distribution verified using reference instrument, TSI 3321 Aerodynamic Particle
 Sizer Spectrometer (pre-calibrated)
- Low-cost OPC is then calibrated by comparing its measured size distribution to the reference
 instrument
- Setup serves as basis for calibration under stratospheric conditions

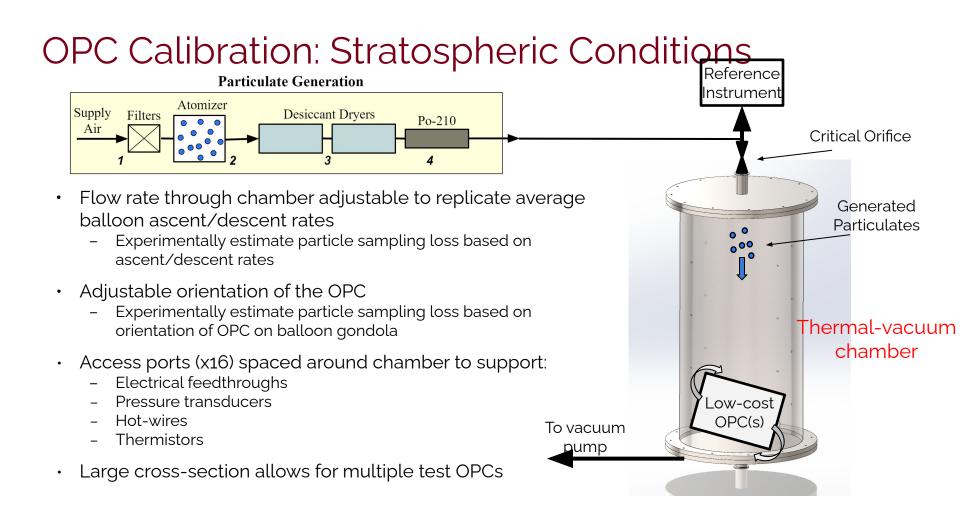
OPC Calibration: Standard Conditions


Plantower PMS5003: 1 µm PSL

- Alphasense OPC-N3 compares well with reference instrument
 (TSI C) for small and large particle sizes
 - But unreliable during balloon flights so far
- Plantower PMS5003 compares poorly with reference instrument
 - Highlighted size bins indicate where particles should have been detected
 - Possible reason includes incorrect flow rates

Arrows indicate size bins where particulates should have been detected

OPC Calibration: Standard Conditions


- Sensirion SPS30 performs better than Plantower
 - Response within an order of magnitude of the reference instrument
 - However, other bins experience spillover during calculations
 - Other SPS30s show very similar results

* Horizontal error bars represent bin width
* Vertical error bars are standard deviations
* SPS30 size bins: 0.3-0.5, 0.5-1.0, 1.0-2.5, 2.5-4.0, 4.0-10

OPC Calibration: Stratospheric Conditions

- Extreme conditions in stratosphere affect transmission efficiency of OPC
 - Transmission efficiency = measure of how efficiently particles travel from atmosphere to detection region of OPC
 - Particles with high inertia (large diameters) could avoid detection
- Need ground experiments to characterize effect of low-pressure and low-temperature on OPC transmission efficiency
 - Generate particles using existing experimental setup and introduce them to OPC inside thermal-vacuum chamber
- Machining of thermal-vacuum completed and installation in progress

Conclusions

- Some low cost OPCs are able to function with modifications in the stratosphere.
- Calibration of low cost OPCs is underway in standard conditions.
 - Calibration in stratospheric conditions will begin soon.

Next Steps

- Conduct calibration tests in extreme stratospheric conditions.
- Continue OPC flights to gain more comparison data between high cost and low cost sensors.

Acknowledgements

Special thanks to the balloonists on the Hypersonic Flight in the Turbulent Atmosphere (HYFLITS) MURI team: Dr. Dale Lawrence and his team (University of Colorado - Boulder) plus Dr. Aroh Barjatya and his team (Embry Riddle Aeronautical University)

and to Principal Investigator Dr. Brian Argrow (University of Colorado - Boulder) and to Dr. Graham Candler (University of Minnesota - Twin Cities).

Funding for this project is provided by the Air Force Office of Scientific Research (AFOSR) - Award Number: FA9550-18-1-0009

